
Congressi SIGA

- Book of abstract
- Scientific Programme
- Session 1 - Epigenetics
- Session 2A - Genome structure function and plasticity
- Session 2B - Proteostasis
- Session 2C - Transport and assimilation: from single cells to whole plant
- Session 3A - Genetics, physiology and breeding of fruit plants
- Session 3B - La diversità genetica umana e il concetto di razza
- Session 3C - La storia della Genetica Italiana
- Session 4 - Systems Biology
- Session 5A - AGI oral Session
- Session 5B - Starch biology and biotechnology
- Session 5C - Green biotechnology for industrial uses
- Session 6A - Crop productivity: physiology and genetics
- Session 6B - Genes and human hereditary diseases
- Session 7 - Biotic interactions: symbiosis and pathogenesis
- Session 8 - Food nutritional value and life span
- Session 9 - Genetics, physiology and biotechnology
- Authors Index
- Keywords Index
under patronage of |
![]() |
![]() |
sponsored by |
![]() |
![]() |
![]() |
![]() |
Keywords Index
8.21 |
||
1000 Genomes project | 3B.02 | |
14-3-3 protein | 2C.12 | |
2D electrophoresis | 2A.73, 2A.77, 7.29 | |
3D crystallization | 9.37 | |
454 sequencing | 7.12 | |
454-reads | 2A.76 | |
5’UTR variants | 6B.06 | |
5A chromosome | 2A.75 | |
5-azaCytidine | 2A.01 | |
5s rRDNA NTS | 2A.16 | |
5'-Tyrosyl-DNA phosphodiesterase | 6A.44 | |
6 Kb palindromic structure | 2A.03 | |
A |
|
|
A. officinalis | 2A.14 | |
A/B-genome | 6A.09 | |
ABA | 2A.68 | |
ABC transporter | 2B.10 | |
aberrant mRNA-splicing | 6A.36 | |
abiotic stress | 1.02, 2A.40, 2A.70, 2C.02, 6A.37, 8.04, 9.19 | |
abscisic acid | 8.04 | |
acclimation | 4.04 | |
ACL | 9.54, 9.55 | |
activity-of-bc1-complex family | 2C.04 | |
acute ozone stress | 9.43 | |
adaptive evolution | 2A.10 | |
Adriano Buzzati-Traverso | 3C.01 | |
AFLP | 2A.18, 2A.42, 3A.17, 5C.08, 9.18 | |
AFLP markers | 5C.09 | |
agamic propagation | 3A.03 | |
AGAMOUS-like gene | 2A.57 | |
AGEs | 5A.05 | |
aggressive periodontitis | 6B.05 | |
aging | 1.07, 9.48 | |
Aglianico | 3A.17 | |
agricultural residue | 5C.03 | |
Agrobacterium tumefaciens | 5C.06 | |
Agrobacterium tumefaciens-mediated transformation | 4.07 | |
agroinfiltration | 5C.15 | |
AHAS-inhibiting herbicides | 9.07 | |
albino leaves | 2C.09 | |
alfalfa | 9.24, 9.25, 9.26, 9.28 | |
algae | 5C.04 | |
alien gene transfer | 6A.20 | |
alkalization | 9.19 | |
allergenicity | 3A.21 | |
allergens | 5C.15 | |
allergies | 8.12 | |
almond | 9.40 | |
alternative splicing | 2A.04, 2A.25 | |
AM fungi | 7.28 | |
amino acid inhibitors as herbicides | 6A.41 | |
aminobisphosphonates | 6A.41 | |
amiprophos-methyl | 9.11 | |
amorpha-4,11diene synthase | 6A.47 | |
ampelography | 3A.17 | |
amylases | 5B.01 | |
ancient DNA | 9.21, 9.45 | |
Antarctic krill | 2A.59 | |
anthocyanin | 2A.26, 3A.09, 6A.23, 6A.32, 8.18, 8.31 | |
anthocyanin mutants | 8.28 | |
antinutritional factors | 8.19 | |
antioxidant | 6A.48, 7.13, 8.01, 8.28, 8.32 | |
antioxidant compounds | 8.14 | |
antioxidant enzyme | 6A.35 | |
AP1 | 2A.30 | |
aphid | 2A.63 | |
apoptosis | 2A.58 | |
Approximate Bayesian Computation | 9.45 | |
aquaporins | 6A.05 | |
Arabidopsis | 1.13, 2A.78, 5B.01, 7.40 | |
Arabidopsis thaliana | 1.12, 2A.04, 2A.51, 2B.06, 2C.12, 5B.02, 5B.03, 6A.45, 7.14, 7.34, 7.38, 7.41 | |
arbuscular mycorrhiza | 7.05 | |
arbuscular mycorrhizal symbiosis | 2C.03 | |
ARDRA | 7.27 | |
arsenic | 2C.13 | |
Artemisia | 5C.05 | |
Artemisia annua | 6A.47 | |
Artemisia umbelliformis | 5C.09 | |
artemisinin | 5C.05, 6A.47 | |
artichoke | 1.06, 2A.43 | |
artificial inoculation | 7.07 | |
Arundo donax | 5C.07 | |
ascorbate peroxidase | 8.26 | |
ascorbic acid | 8.27, 8.34 | |
ascorbic acid degradation | 8.07 | |
asparaginyl peptidase | 2A.82 | |
Asplenium nidus | 2A.15 | |
association analysis | 6A.19 | |
association mapping | 2A.79, 6A.12, 6A.16, 6A.28 | |
association study | 3A.20 | |
Asteraceae | 9.10 | |
ATP synthesis | 2C.05 | |
authentication | 9.20 | |
autophagy | 9.50 | |
autoregulation of nodulation | 7.37 | |
auxin | 6A.24, 9.32 | |
auxin biosynthesis | 6A.26 | |
axillary meristem | 2A.19 | |
B |
|
|
BAC probes | 2A.65 | |
Bacillus subtilis | 5C.13 | |
bacterial endophytes | 7.27 | |
barcode | 3A.23 | |
barcoding | 2A.73, 9.13 | |
barley | 7.15, 9.01, 9.04 | |
base composition | 9.52 | |
bean resistance | 7.30 | |
bean weevils | 7.30 | |
berry color | 2A.12 | |
beta-carotene | 8.09 | |
bHLH | 2A.37 | |
big bud mite | 3A.06 | |
BILs | 2A.53 | |
bioactive compounds | 8.23 | |
biochemical and transcriptional analysis | 2A.35 | |
biocontrol agent | 2A.52 | |
biodiesel | 6A.46 | |
biodiversity | 9.46 | |
biodiversity conservation | 9.16 | |
bioethanol | 5C.11 | |
biofuel | 5C.03, 5C.04, 5C.10 | |
bioinformatics | 2A.49, 2A.86, 4.15, 7.07 | |
biological activity | 5C.08 | |
biomass | 5C.07, 5C.12, 6A.37 | |
biopharmaceuticals | 5C.14 | |
bioremediation | 5C.02 | |
biosynthetic genes | 9.22 | |
biotechnological manipulation | 4.01 | |
biotic stress | 7.41, 6A.37 | |
biotic stress tolerance | 2A.52, 7.28 | |
biotype | 3A.17 | |
Blast2GO | 2A.31 | |
blind analysis | 8.29 | |
Bos primigenius | 9.51 | |
Botrytis cinerea | 7.34 | |
bovine | 2A.13 | |
bovine mitochondrial DNA | 9.51 | |
Brachypodium distachyon | 2A.17 | |
Brassica oleracea | 1.10 | |
Brassica rapa L. cv. sylvestris | 8.25, 8.27 | |
bread-making quality | 7.32 | |
breeding | 3A.20, 8.28, 9.15 | |
BTH | 7.39 | |
bud set | 6A.39 | |
bud sprouting | 3A.05 | |
C |
|
|
cadmium | 2B.06 | |
cadmium treatment | 2B.09 | |
calcium | 9.33 | |
calcium homeostasis | 2C.02 | |
Camelus dromedarius | 2A.62 | |
cAMP-sponge | 4.07 | |
candidate genes | 2A.10, 2A.50, 6A.03 | |
carbohydrates | 3A.02, 5C.04 | |
carotenoid | 2B.11, 4.03, 8.13 | |
carotenoid bleaching | 3A.11 | |
carotenoid pathway | 2A.28, 8.06 | |
carotenoid pigments | 6A.17 | |
Castanea sativa | 3A.07 | |
cattle | 9.46 | |
CCCH zinc finger domain | 2A.78 | |
CDKN2A | 6B.06 | |
cDNA microarray | 7.11 | |
cell adhesion morphogenesis | 6B.02 | |
cell cultures | 5C.05, 8.24 | |
cell cycle | 5A.03, 9.53 | |
cell cycle regulation | 7.06 | |
cell division | 5A.04 | |
cell expansion | 2A.19 | |
cell migration | 2A.08 | |
cell proliferation | 2A.08 | |
cell wall | 2A.19, 7.20, 9.32 | |
cell wall degrading enzymes | 5C.03, 7.09 | |
cellular redox state | 7.06 | |
cellulase | 5C.11, 5C.13 | |
cellulose | 5C.13 | |
cellwall reinforcement | 7.22 | |
Centaurea | 9.41 | |
centromere | 1.04 | |
centromeric sequences | 2A.46 | |
Cetartiodactyla | 2A.60 | |
cGMP | 7.41 | |
changing phase | 3A.03 | |
chemotipes | 5C.08 | |
chestnut | 3A.07 | |
chilling units | 3A.05 | |
chimeric photoreceptors | 2A.66 | |
ChIP-seq | 2A.30 | |
chitosan | 7.33 | |
Chlamydomonas reinhardtii | 2B.11 | |
chlorogenic acid | 8.31 | |
chlorophyll fluorescence | 3A.12 | |
chloroplast | 2A.27, 2B.04, 2B.08, 2C.04, 7.35, 9.36 | |
chloroplast DNA analysis | 9.21 | |
Chondrilla | 1.02, 5A.04, 6B.01, 9.14 | |
chromatin remodelling | 1.14 | |
chromosomal rearrangements | 2A.80 | |
chromosome | 9.54 | |
chromosome 5A | 2A.83 | |
chromosome aberrations | 5A.05, 9.53 | |
chromosome abnormality | 9.46 | |
chromosome engineering | 6A.20, 6A.21 | |
chromosome evolution | 2A.65 | |
chromosome pairing | 9.28 | |
chromosome segregation | 5A.04, 9.55 | |
Chrysanthemum cinerariaefolium L. | 9.10 | |
Chrysolina herbacea | 7.26 | |
Cichorium | 9.14 | |
Cichorium intybus L. | 6A.04 | |
circadian clock | 2A.59 | |
Citrus | 3A.08, 7.29 | |
Citrus rootstock | 3A.04 | |
Citrus sinensis | 6A.34 | |
Claviceps purpurea | 7.21 | |
clearfield rice | 9.07 | |
CM proteins nitrogen fertilization | 8.12 | |
cognitive decline | 9.48 | |
colchicine | 9.11 | |
cold shock domain protein | 2A.08 | |
cold storage | 8.23 | |
cold stress | 3A.12, 9.36 | |
cold treatment | 6A.38 | |
CombiMatrix Array | 3A.04 | |
common bean | 8.04, 9.27 | |
common fragile sites | 6B.08 | |
complex N-glycans | 2B.05 | |
component resolved diagnosis | 8.16 | |
computational pipeline | 4.05 | |
consensus map | 2A.80 | |
conservation genetics | 9.41 | |
conservation measure | 8.08 | |
control analysis | 4.01 | |
crop evolution | 9.17, 9.29 | |
crop productivity | 6A.04 | |
crop residue | 5C.03 | |
crop safety | 2C.13 | |
cry gene | 2A.45 | |
cryptic variation | 2A.56 | |
crystal-Stellate | 2A.56 | |
CTV | 7.29 | |
C-type LMW-GS | 2A.77 | |
Culex quinquefasciatus | 2A.64 | |
cultivated cardoon | 5C.12 | |
cyanophicin | 5C.01 | |
cybrid cell lines | 1.05 | |
cyclodextrins | 5C.05 | |
Cycloidea-like genes | 2A.41 | |
Cynara cardunculus | 2A.43, 8.21, 9.12 | |
cysteine | 9.38 | |
cytochrome c | 6B.04 | |
cytochrome P450 | 7.25 | |
cytogenetic map | 2A.02, 2A.75 | |
cytokine genes | 6B.05 | |
cytokinesis | 9.54 | |
cytokinin signalling | 7.01 | |
cytokinin-auxin crosstalk | 9.30 | |
cytokinins | 7.42 | |
cytoplasmic DNA | 2A.85 | |
cytosine methylation | 1.03 | |
CzcCBA transporter | 4.10 | |
D |
|
|
Damage-associated molecular patterns (DAMPs) | 7.36 | |
DArT markers | 6A.13, 6A.16 | |
Daucus carota | 7.05 | |
de novo assembly | 2A.36 | |
debranching enzymes | 5B.01 | |
deep sequencing | 1.06 | |
defence genes | 7.11, 7.18, 9.33 | |
defence proteins | 7.30 | |
defence response | 7.19, 7.34 | |
deficiens | 6A.31 | |
Dendrobium | 9.09, 9.11 | |
Dermatophagoides pteronyssinus | 5C.15 | |
desaturases | 3A.16 | |
detoxification | 6A.34 | |
development | 6A.24 | |
DGAT | 5C.06 | |
Diabrotica virgifera virgifera | 7.31 | |
dicaffeoylquinic acids | 8.03 | |
DICER-LIKE 4 | 2A.09 | |
differential gene expression | 2A.05, 3A.04 | |
disease | 8.01 | |
disease resistance | 7.24 | |
DNA barcoding | 9.21 | |
DNA extraction | 8.20 | |
DNA methylation | 1.08, 1.11 | |
DNA methyltransferase genes | 9.24 | |
DNA polymerase gamma pathological mutation | 6B.10 | |
DNA polymerase zeta | 6B.10 | |
DNA repair | 6A.44 | |
DNA repair foci | 9.53 | |
DNA-methylation | 1.09 | |
domain | 2A.54 | |
domestication | 5A.02, 9.12, 9.17, 9.51 | |
downy mildew | 2A.40 | |
DREB genes | 2A.81 | |
Drosophila | 5A.04, 5A.05, 9.54, 9.55 | |
Drosophila melanogaster | 2A.56 | |
drought | 2A.72, 6A.05, 6A.27, 6A.30 | |
drought stress | 6A.08 | |
drought tolerance | 6A.01 | |
Duplex PCR | 8.33 | |
durum wheat | 2A.01, 2A.75, 2A.77, 2A.78, 2A.79, 2A.80, 2A.81, 6A.07, 6A.10, 6A.14, 6A.15, 6A.18, 8.12, 8.13, 9.01, 9.08 | |
durum wheat (Triticum durum Desf.) | 6A.12, 6A.13 | |
durum wheat mitochondria | 2C.05 | |
E |
|
|
E7 protein | 9.31 | |
early nodulin | 7.08 | |
ecology | 4.06, 4.13 | |
EcoTILLING | 3A.15 | |
ectodermal dysplasia | 6B.02 | |
ectomycorrhizae | 9.39 | |
ectopic expression | 2A.21 | |
eggplant | 6A.33, 7.17 | |
elicitors | 7.34 | |
elongation | 4.04 | |
EMS | 6A.17 | |
endangered breed | 9.46 | |
endemic species | 9.41 | |
endo-1,4-beta-glucanase | 5C.13, 7.09 | |
endoplasmic reticulum | 2B.07 | |
endoreduplication | 6A.26 | |
endosperm | 6A.26 | |
endosperm mutant | 4.12, 4.15 | |
energy crop | 5C.07, 5C.12 | |
Enhancer Tetraplex 3D conformation | 2A.03 | |
ent-kaurenoic acid oxidase | 6A.36 | |
environmental associations | 2A.10 | |
environmental changes | 9.41 | |
environmental security | 3A.07 | |
environmental stress | 1.08, 2C.05 | |
epigenetic | 1.02, 1.07, 1.13, 1.14, 6B.01, 8.18, 9.24 | |
epigenetic marks | 1.08 | |
epigenetic regulation | 1.04 | |
epiphilly | 2A.31 | |
epistasis | 6B.05 | |
epithelial development and differentiation | 6B.03 | |
er1 resistance | 7.04 | |
ERF (Ethylene-Responsive Factor) | 6A.45 | |
EST-SSRs | 2A.55 | |
ethylene | 7.25 | |
European aurochsen | 9.51 | |
evergrowing | 3A.05 | |
evolution | 2A.02, 2A.71, 4.05, 4.06, 4.13 | |
evolutionary synthesis | 3C.03 | |
expansin | 2A.19 | |
experimental mutagenesis | 7.04 | |
expression analysis | 2A.72 | |
expression-QTL mapping | 2A.72 | |
F |
|
|
F1 hybrids | 6A.04 | |
fAFLP | 9.08 | |
fatty acid | 3A.16 | |
fertility | 5A.03 | |
FHB resistance | 6A.21 | |
filbert tree | 3A.06 | |
fine mapping | 6A.14 | |
fingerprinting | 9.08 | |
FISH | 2A.02, 9.02 | |
flavonoids | 2A.35, 2A.37, 3A.19 | |
floral meristem | 2A.30 | |
floral symmetry | 2A.41 | |
floral transition | 2A.30, 9.03 | |
flow cytometry | 9.02 | |
flow cytometry and sorting | 9.11 | |
flower development | 2A.57 | |
flowering | 1.14, 4.04 | |
flowering regulome | 3A.03 | |
flowering time | 1.03 | |
flower-organ identity genes | 3A.24 | |
fluorescence resonance energy transfer (FRET)-based indicator | 2C.02 | |
folding | 2B.08 | |
food | 8.01 | |
food allergens | 8.15 | |
food allergy | 8.16 | |
food genomics | 8.20 | |
food labelling | 8.15 | |
food preferences | 3B.03 | |
FORL | 7.25 | |
fructan | 8.01 | |
fruit development | 3A.05 | |
fruit quality | 3A.20, 6A.48 | |
fruit set | 6A.43 | |
fruit tree breeding | 3A.06 | |
FTIR spectroscopy | 5C.04 | |
functional food | 3A.11, 8.18 | |
functional genomics | 2A.04, 2A.25 | |
functional markers | 6A.19 | |
fungal and bacterial pathogens | 7.02 | |
fungal disease | 4.13 | |
fungal inoculation | 7.17 | |
fungal proteins | 7.11 | |
Fusarium ear rot | 7.24 | |
Fusarium oxysporum | 7.17 | |
Fusarium verticillioides | 7.07 | |
|
||
G6PDH | 6A.42 | |
GAD65 | 5C.17 | |
GAD65mut | 5C.16 | |
GAPC | 2B.06 | |
gas exchange | 2C.06 | |
gene | 2A.02, 4.05, 6B.01 | |
gene cluster | 2A.54 | |
gene expression | 2A.27, 4.06, 5C.05, 8.26 | |
gene expression analysis | 6A.29 | |
gene expression profiling | 2A.36 | |
gene family | 3A.21 | |
gene flow | 2A.55, 9.07 | |
Gene Ontology classes | 7.12 | |
gene promoter | 9.05, 9.52 | |
gene pyramiding | 6A.18 | |
gene silencing | 1.15 | |
genetic traceability | 3A.18 | |
genetic transformation | 3A.10 | |
genetic variability | 3A.07 | |
genetic variability analysis | 9.27 | |
genetic variation | 9.18 | |
genetics of taste | 3B.03 | |
genetically encoded Ca2+ specific probes | 2C.02 | |
Geneticists’ Manifesto | 3B.01 | |
genome | 2A.60 | |
genome annotation | 2A.07 | |
genome assembly | 2A.48 | |
genome evolution | 2A.38 | |
genome organization | 2A.43 | |
genome sequencing | 2A.07, 2A.44 | |
genome stability | 9.55 | |
genome walking | 2A.32 | |
genome-wide association | 6A.27 | |
genomic instability | 6B.08 | |
Genomic interspecies survey | 2A.03 | |
genomic organization | 2A.60 | |
genomics | 6A.27 | |
genotype fingerprinting | 5C.09 | |
genotyping | 2A.69 | |
germin like protein | 8.07 | |
germination | 1.09, 2A.78, 8.22 | |
germplasm | 2A.42, 3A.23, 6A.46 | |
germplasm conservation | 9.18 | |
GH3 enzymes | 3A.22 | |
gibberellic acid | 6A.43 | |
gibberellin | 6A.43 | |
gibberellin biosynthesis | 6A.36 | |
gibberellins response | 5B.02 | |
global DNA methylation | 1.05 | |
Globosa | 6A.31 | |
glucose | 5A.05 | |
glucosinolate | 7.25 | |
glutamine sinthetase | 2C.15 | |
glutaredoxin | 9.38 | |
glutathione | 8.25 | |
glutathione S-transferase | 2A.26, 8.03 | |
glutathione transferase | 6A.34 | |
glutathionylation | 9.38 | |
gluten proteins | 2B.03 | |
glycine rich-protein 3 | 7.36 | |
glycoalkaloids | 8.31 | |
grain protein content | 6A.10 | |
grain yield | 6A.14 | |
grape | 2A.12, 2A.37, 3A.02, 3A.19 | |
grapevine | 2A.38, 3A.10 | |
green coffee | 8.22 | |
green microalgae | 5C.02 | |
green tissues | 8.23 | |
growth | 1.09 | |
guard cell | 5B.03, 4.14 | |
GUS | 4.14 | |
gut microbial flora | 7.26 | |
GxE interaction | 9.23 | |
GxS interaction | 6A.39 | |
H |
||
H+-ATPase | 2C.12 | |
hand grip | 9.47 | |
haplotype | 2A.12 | |
haplotype analysis | 7.15 | |
haplotype diversity | 2A.07 | |
HD-Zip | 2A.51 | |
heat dissipation | 1.15 | |
heat stress | 2A.72, 6A.30 | |
heavy metal | 6A.35, 4.10 | |
Helianthus annuus | 6A.03, 2A.41 | |
Helianthus spp. | 9.13 | |
heme lyase | 6B.04 | |
herbicide tolerance | 9.07 | |
hereditary disease | 6B.03 | |
heterosis | 6A.25, 9.26 | |
High Resolution Melting | 2A.81, 3A.16 | |
high-amylose | 8.10 | |
High-Molecular-Weight Glutenin Subunit | 2B.03 | |
histone acetylation | 1.07, 1.12, 9.55 | |
histone variants | 5A.04 | |
history of genetics | 3C.03 | |
HIV infection | 6B.07 | |
holocentric chromosomes | 2A.63 | |
homogalacturonan | 7.20 | |
Hordeum vulgare | 6A.22 | |
hordoindolines | 9.04 | |
hormonal crosstalk | 7.01 | |
hormones | 3A.22 | |
Horse mitochondrial genome | 5A.02 | |
horticultural traits | 6A.33 | |
host genetic factors | 6B.07 | |
HPV vaccination | 9.31 | |
HRM | 8.33, 9.01 | |
HSP 18.2 promoter | 6A.30 | |
human demography | 3B.02 | |
human genome | 2A.65 | |
hydroperoxide stereochemistry | 8.13 | |
hydroponic colture | 5C.11 | |
hydroxylase3 | 8.09 | |
hydroxyphenylpyruvate reductase (HPPR) gene | 8.24 | |
Hypersensitive Response (HR) | 7.35, 7.38, 7.40 | |
hypogeous organism | 2A.66 | |
I |
||
Illumina assay | 6A.11 | |
Illumina GoldenGate assay | 2A.69 | |
immune response | 4.13 | |
immunity | 7.36 | |
immuno-markers | 6B.07 | |
immunotherapy | 8.16 | |
in situ hybridization | 2A.65 | |
in vitro propagation | 2A.18 | |
inbred lines | 8.09 | |
indel | 2A.49 | |
inflorescence | 6A.43 | |
intellectual disability | 6B.01 | |
intercropping | 6A.46 | |
international scientific cooperation | 3C.01 | |
inter-organelle connections | 2B.04 | |
interphase nuclei | 2A.65 | |
interspecific hybrid verification | 9.13 | |
intraindividual chromosomal instability | 2A.63 | |
introgression lines | 3A.01, 4.11, 5C.10 | |
intron loss | 2A.28 | |
ionic effect | 2C.07, 2C.14 | |
ionome | 4.11 | |
ions | 8.17 | |
IQ debate | 3B.01 | |
Iranian population | 9.56 | |
iron chlorosis | 3A.04 | |
ISSR | 2A.42 | |
Italian rice cultivars | 7.39 | |
ITS | 9.13 | |
ITS sequencing | 9.39 | |
J |
||
Jatropha curcas | 5C.06 | |
Jerusalem artichoke | 6A.37, 6A.38 | |
juvanility | 3A.03 | |
K |
||
K. x houghtonii | 2A.31 | |
K+ channel | 2C.05 | |
KEGG pathways | 7.12 | |
kernel proteome | 2A.83 | |
kernel texture | 9.04 | |
kinase-associated protein phosphatase | 7.36 | |
kinetochore | 1.04 | |
L |
||
laccase | 5C.02 | |
lacking haemolytic activity (LHA) | 2A.24 | |
Lactuca | 9.14 | |
lamb’s lettuce | 8.23 | |
lamins | 2A.11 | |
LAR | 2A.20 | |
larval development | 7.31 | |
laser capture microdissection | 3A.08 | |
Laser Micro Dissection (LMD) | 6A.05 | |
lateral roots | 7.01 | |
LC-ESI-QTOF-MS/MS | 2A.21 | |
leaf development | 2A.25, 2A.51 | |
leaf hydraulic conductance | 2C.06 | |
leaf rust | 2A.17, 7.16 | |
Leaf rust (Puccinia triticina Eriks.) | 6A.12 | |
leaf stripe | 7.15 | |
Lesion Mimic Mutant (LMM) | 7.35 | |
light and temperature changes | 8.02 | |
light harvesting protein | 2A.32 | |
light responses | 2A.66 | |
light stress | 2A.67 | |
linkage disequilibrium | 2A.79, 9.29 | |
linkage map | 2A.17 | |
linkage mapping | 6A.11 | |
lipase | 8.22 | |
lipid | 5C.04, 8.22 | |
lipoxygenases | 8.13 | |
LMW-GS | 2A.82 | |
local genotypes | 9.42 | |
longevity | 8.01, 9.47, 9.49 | |
Lotus corniculatus | 2A.20 | |
Lotus japonicus | 9.22 | |
low and high amylose | 5B.04 | |
low input | 9.15 | |
low phytic acid | 8.04 | |
LOX | 6A.09 | |
lpa280-10 mutant | 8.19 | |
Lr14 | 6A.12 | |
LTR retrotransposons | 2A.64 | |
LTR_STRUC | 2A.64 | |
lutein | 8.13 | |
lycopene | 8.06 | |
Lycopersicon esculentum genome | 2A.54 | |
lysosomal enzyme | 5C.14 | |
M |
||
M. truncatula | 2A.25 | |
MADS-box sequences | 3A.24 | |
Magnaporthe oryzae | 7.23 | |
maize | 2A.09, 8.17, 8.18 | |
major QTL | 6A.14 | |
malate | 3A.02 | |
male sterile mutants | 6A.04 | |
male sterility | 6A.31 | |
Malus domestica | 3A.11 | |
Malus x domestica | 3A.20, 3A.21 | |
mannosidase | 5C.14 | |
mannosidosis | 5C.14 | |
MAP kinases | 7.34 | |
MAPK | 7.40, 9.33 | |
Maremmano breed | 2A.61 | |
Marker Assisted Selection | 6A.01, 6A.18, 7.04, 8.33 | |
mass spectrometry | 7.37, 8.12, 9.35, 9.36 | |
MAT1A gene | 1.05 | |
mating type | 2A.23 | |
maturation process | 2A.82 | |
Medicago sativa | 9.03, 9.23 | |
Medicago truncatula | 2A.24, 2A.26, 6A.44, 7.01, 7.05, 7.08, 7.42 | |
Mediterranean pines | 2A.10 | |
meiosis | 5A.03, 9.54 | |
melanoma | 6B.06 | |
membrane potential | 2C.05 | |
membrane proteins | 2B.05 | |
Mentha aquatica | 7.26 | |
Mentha species and hybrids | 2A.16 | |
mesophyll cells | 9.09 | |
metabolic flux | 8.07 | |
metabolic modelling | 4.01 | |
metabolic pathways | 9.49 | |
metabolism | 2A.58, 8.25 | |
metabolite profiling | 3A.13 | |
metabolomics | 4.03, 7.39 | |
metagenomic | 5C.13 | |
metallothionein | 6A.35 | |
metals | 2C.04 | |
metals accumulation | 4.11 | |
methyl jasmonate | 6A.45 | |
methylation | 1.10 | |
methyltransferase | 3A.09 | |
microarray | 2A.01, 2A.59, 2A.84, 3A.08, 9.43 | |
microarray analysis | 4.12, 4.15, 7.07, 7.17 | |
microarrays | 2A.33 | |
microRNA | 1.06, 4.08 | |
microsatellite markers | 7.30 | |
microsatellites | 2A.75, 9.40, 9.41 | |
microsporogenesis | 1.12 | |
microtubers | 6A.38 | |
mineral nutrients | 2C.09 | |
mineral nutrition | 2C.03 | |
miRNAs | 6B.07, 7.03 | |
miRNome | 2A.70 | |
mistletoe | 2C.09 | |
mitochondria | 2B.04, 4.09, 5A.01, 6B.04, 6B.09 | |
mitochondrial disease | 6B.04, 6B.09 | |
mitochondrial DNA | 9.45 | |
mitochondrial genome | 2A.61 | |
mitochondrion | 2A.29 | |
Mixed Linear Model | 6A.28 | |
mlo resistance | 7.04 | |
Moco | 2A.68 | |
molecular cytogenetics | 9.14 | |
molecular explanation | 3C.03 | |
molecular fingerprinting | 2A.16 | |
molecular markers | 2A.14, 2A.18, 2A.85, 2A.86, 6A.10, 6A.37, 7.24, 9.20 | |
Monilophytes | 2A.15 | |
monocotyledons | 7.23 | |
monoterpenoids | 7.26 | |
morphological traits | 8.08 | |
morphotype | 4.06 | |
mouse gametogenesis | 6B.08 | |
MPV17/SYM1 | 5A.01 | |
MRP transporter | 8.04 | |
M-SAP | 1.09 | |
M-SAP technique | 1.10 | |
mtDNA | 5A.01 | |
mtDNA haplogroups | 5A.02 | |
mtDNA instability | 5A.01 | |
mtDNA variability | 1.05 | |
MtN5 | 7.08 | |
multi-elements | 9.20 | |
multigene family | 2A.32 | |
multilocation trials | 9.23 | |
multilocus longevity | 9.49 | |
Multiplex Real-Time PCR | 8.15 | |
mutant | 6A.36 | |
mutation | 3A.16 | |
MYB | 6A.32 | |
Myrtus communis | 5C.08 | |
N |
||
N metabolism | 2C.10, 2C.11 | |
NAD(P)H oxidase | 9.34 | |
NAD+-dependent deacetylases | 2A.39 | |
NADH-GOGAT | 2A.76 | |
natural range | 9.44 | |
natural variation | 3A.15 | |
near isogenic lines | 6A.25 | |
nectin | 6B.02 | |
network | 6B.01 | |
network analysis | 4.03 | |
Neurospora transformants | 2A.66 | |
neutrality tests | 2A.10 | |
Next Generation Sequencing (NGS) | 2A.12, 2A.36, 2A.44, 2A.47, 2A.49, 2A.59, 3A.01, 6A.11, 6A.15 | |
Next-Generation Sequencing technologies | 2A.48 | |
N-glycoproteome | 2B.05 | |
NGS sequencing | 2A.43 | |
Nicotiana benthamiana | 3A.10, 5C.17 | |
Nicotiana tabacum | 2A.21, 2B.08, 5C.11, 5C.14, 5C.16, 9.03, 9.37 | |
nitrate reductase | 2C.15 | |
nitric oxide | 7.38, 7.41, 9.33, 9.48 | |
nitrogen fixing nodules | 7.01 | |
nitrogen metabolism | 2C.15 | |
nodal explants | 6A.38 | |
normalized library | 2A.59 | |
NOS-1 | 9.48 | |
nuclear DNA | 2A.85 | |
nuclear transformation | 2B.11 | |
nucleotide diversity | 9.17, 9.29 | |
nutraceutical | 8.24 | |
nutritional stress response | 9.50 | |
nutritional value | 8.28 | |
O |
||
OeSLG and OeSCR | 3A.25 | |
OeSRK | 3A.25 | |
Oidium neolycopersici | 7.13 | |
oil DNA | 9.21 | |
Olea europaea | 3A.12, 3A.15, 3A.16, 3A.23, 3A.24, 3A.25 | |
oleanolic acid | 2A.24 | |
oligogalacturonides | 7.14 | |
olive oil | 8.20 | |
omega 3 fatty acid desaturase | 3A.15 | |
Opaque-2 | 4.12 | |
Opaque-6 | 4.15 | |
Opaque-7 | 4.12 | |
OPPP | 6A.42 | |
Orchidaceae | 2A.57 | |
organelle fission | 2B.04 | |
organic agriculture | 9.15 | |
organic farming | 9.23 | |
origin of Equus caballus | 5A.02 | |
Oryza sativa | 6A.28 | |
osmotic stress | 6A.44 | |
oxalate oxidase | 8.07 | |
oxidation | 9.38 | |
oxidative stress | 2B.06, 2C.04, 6A.40, 7.33 | |
ozone | 9.33, 9.34 | |
ozone-responsive genes | 9.43 | |
P |
||
p53 family | 2A.58 | |
P5C | 6A.41 | |
P63 | 2A.08, 6B.03 | |
paleopolyploidy | 2A.38 | |
paralogs | 2A.06 | |
pathogenesis | 7.03 | |
pathogenicity | 7.09 | |
PCA | 4.11 | |
PCR | 8.09 | |
PCR-based markers | 2A.53 | |
PCR-RFLP | 2A.16 | |
PDR gene family | 3A.14 | |
peach | 7.03 | |
pectic enzymes | 7.10 | |
pectin | 7.02 | |
pectin methyl esterase inhibitor | 7.22 | |
pectin methylesterase | 7.02 | |
peeled tomato | 8.29 | |
PEP carboxykinase | 3A.02 | |
peroxidases | 8.27 | |
peroxisomes | 2B.04 | |
peroxynitrite | 7.40 | |
Petunia | 2A.37 | |
Petunia hybrida | 2A.19, 3A.09 | |
PFF | 2A.77 | |
PGIP | 7.18, 7.21 | |
pH | 9.19 | |
pharmaceuticals | 8.03 | |
phaseolin | 2B.08 | |
Phaseolus vulgaris | 7.30, 9.17, 9.29 | |
phenolic biodiversity | 8.14 | |
phenolics | 8.32 | |
phenological stages | 8.31 | |
phenology | 3A.05 | |
phenotypic plasticity | 2A.05, 6A.39 | |
pheromones | 2A.23 | |
phloem structure | 2C.09 | |
phosphate uptake | 2C.03 | |
phospholipase A2 | 6A.08 | |
photo-oxidative damage | 6A.44 | |
photoprotection | 1.15 | |
photoreceptors | 2A.27 | |
photosynthesis | 2C.04 | |
Photosystem II core complex | 9.37 | |
phylogenesis | 4.05 | |
phylogenetic analysis | 2A.61 | |
phylogensis | 9.52 | |
physic nut | 6A.46 | |
phytic acid | 8.17, 8.19 | |
phytochrome | 4.04 | |
phytoene synthase | 2B.11 | |
phytopatogenic fungi | 7.10 | |
Phytoptus avellanae (Nalepa) | 3A.06 | |
phytoremediation | 2A.50, 2B.09, 4.10 | |
PI3K signaling | 2A.08 | |
pig | 9.46 | |
pigmented wheat | 8.14 | |
pigments | 8.02 | |
PIN auxin efflux carriers | 6A.24 | |
Pinus sylvestris | 9.44 | |
piRNAs pathways | 2A.56 | |
plant adaptation | 2A.32 | |
plant architecture | 2A.04 | |
plant branching | 9.22 | |
plant breeding | 6A.18 | |
plant cell cultures | 5C.06 | |
plant cell wall | 7.10, 7.14 | |
plant defence | 7.14 | |
plant development | 2A.09 | |
plant disease | 7.22 | |
plant genetic resources | 9.16 | |
plant growth | 5B.02 | |
plant miRNAs | 2A.33 | |
plant mitochondria | 2A.15, 2C.02 | |
plant proteomics | 2B.09 | |
plant resistance | 7.02 | |
plant signaling | 7.41 | |
plant-insect interactions | 2A.84 | |
plant-microbe interactions | 7.05 | |
plants | 9.37 | |
plasma membrane | 9.32 | |
plastics | 5C.01 | |
Plastidic glucose-6-phosphate dehydrogenase | 6A.42 | |
plastids differentiation | 1.15 | |
Platanus acerifolia | 7.11 | |
PLMVd | 7.03 | |
PMEI | 7.18 | |
PMF | 2A.77 | |
Polar Auxin Transport | 6A.24 | |
pollen | 4.14, 9.34 | |
polyamine oxidase | 4.14 | |
Polygalacturonase | 7.20, 7.21 | |
Polygalacturonase inhibitor protein | 7.22 | |
polyhydroxyalkanoate | 5C.01 | |
polymers | 5C.01 | |
polymorphism | 8.11 | |
polyphenol oxidase activity | 6A.19 | |
polyphenols | 8.34 | |
polyploidization | 9.11, 9.24 | |
polyploydy | 9.28 | |
polysomal profiling | 6B.06 | |
poplar | 2A.47, 2B.09 | |
poplar clones | 9.43 | |
population genetics | 2A.22, 3C.01, 9.44 | |
population structure | 2A.79 | |
population studies | 3B.03 | |
Populus deltoides | 2A.46 | |
Populus nigra | 2A.46, 2A.48, 6A.39 | |
Populus trichocarpa | 2A.46, 2A.48, 6A.42 | |
positional cloning | 6A.22 | |
postharvest storage | 8.27 | |
potassium channel | 2B.10 | |
potato | 2A.85 | |
potato virus X | 5C.15 | |
powdery mildew | 2A.01 | |
PP2A | 9.53 | |
PR-10 | 3A.21 | |
prebiotics | 8.01 | |
proanthocyanidin | 2A.21, 2A.20 | |
programmed cell death | 7.06, 7.33 | |
programmed cell death under biotic stress conditions | 6A.41 | |
proline | 6A.40 | |
proline dehydrogenase/proline oxidase | 2A.58 | |
proline metabolism | 6A.41 | |
propagation | 6A.46 | |
protein bodies | 2B.07 | |
protein folding | 9.05 | |
protein modeling | 2A.62 | |
protein stability | 2B.08 | |
protein turnover | 2B.10 | |
protein-protein interactions | 2C.12, 5B.01 | |
proteins | 8.17 | |
proteomic | 2A.82, 2A.83, 7.29, 8.05, 8.10, 9.35 | |
protoplast | 9.09, 9.10 | |
Prunus persica | 2A.49, 3A.01, 3A.03, 3A.11, 3A.13 | |
Prunus/Anemone rust | 7.12 | |
Przewalskii horse | 5A.02 | |
Pseudomonas putida | 4.10 | |
Pseudomonas syringae pv. tomato (Pst) | 8.33 | |
Pseudoplatanus | 7.33 | |
Pseudotomentella | 9.39 | |
Psy gene family | 2A.28 | |
PTGS | 3A.10 | |
purification | 5C.16 | |
Pyrenochaeta lycopersici | 7.09 | |
pyrosequencing | 2A.31 | |
Q |
|
|
qPCR | 3A.21, 6A.26 | |
QTL | 2A.17, 2A.53, 5C.12, 6A.20, 6A.25, 6A.33, 6A.39 | |
QTL analysis | 2A.35, 6A.23, 7.16 | |
QTL cloning | 6A.14 | |
QTL mapping | 6A.01, 6A.13 | |
quantitative resistance | 2A.17 | |
Quercus frainetto | 2A.55 | |
Quercus petraea | 2A.55 | |
Quercus pubescens | 2A.55 | |
R |
|
|
R/FR | 4.04 | |
r1 gene | 6A.23 | |
R2R3 MYB | 2A.40 | |
racial science | 3B.01 | |
radiobiology | 3C.01 | |
ragweed | 9.34 | |
Random Forest | 6A.28 | |
RAPD | 9.08 | |
Reactive Oxygen Species (ROS) | 7.13, 7.39, 7.35 | |
Real Time RT-PCR | 2A.45, 2A.57 | |
recombinant allergens | 8.16 | |
Recombinant Inbred Line | 6A.07, 6A.09 | |
red rice | 9.07 | |
redox | 5B.03, 9.32 | |
redox sensor | 9.38 | |
regulation | 2A.29 | |
regulatory design | 4.01 | |
regulatory networks | 4.08 | |
Regulatory Region | 2A.03 | |
repeated sequences | 2A.44, 2A.47 | |
replication | 2A.11 | |
reproduction | 1.13 | |
reproductive organs | 2A.41 | |
rescue of mtDNA mutability | 6B.10 | |
resistance gene | 1.11, 2A.38, 7.15, 7.16 | |
resistance to mites | 3A.06 | |
responsive elements | 2A.58 | |
Restriction-site Associated DNA (RAD) | 6A.33 | |
resveratrol | 3A.14 | |
retrotransposons | 2A.44, 2A.47, 2A.67 | |
Rev1 | 6B.10 | |
Rev3 mutagenesis | 6B.10 | |
reverse genetic | 6A.03, 8.06 | |
reversible glucan phosphorylation | 5B.01 | |
RFLP | 2A.73 | |
R-genes | 7.12 | |
rhizobia | 7.08 | |
rhizosecretion | 5C.11 | |
rhododendron | 9.19 | |
Ribosome Inactivating Proteins | 9.31 | |
rice | 6A.27, 7.23 | |
rice germplasm | 6A.40 | |
ripening | 4.03 | |
ripetitive sequences | 2A.43 | |
RNAi | 2A.20 | |
RNA-seq | 2A.13, 3A.12 | |
ROC | 2A.34 | |
root damage | 7.31 | |
root meristem mainteinance | 9.30 | |
root morphology | 6A.07 | |
roots | 4.14 | |
ROS | 1.05, 8.01, 8.25, 9.34 | |
rosaceae | 3A.01 | |
rosmarinic acid | 8.24 | |
R-protein | 2A.54 | |
rRNA genes | 9.14 | |
rubber | 5C.01 | |
S |
|
|
saccharification | 5C.03 | |
Saccharomyces cerevisiae | 1.07, 4.09, 6B.09, 9.50 | |
SAGA complex | 1.04 | |
Salicaceae | 2A.50 | |
salinity | 1.09, 6A.30 | |
salt stress | 1.06, 2A.67, 2A.78 | |
salt stress tolerance | 2A.81, 6A.40 | |
salt tolerance | 2C.14 | |
Salvia officinalis | 8.24 | |
San Marzano | 8.29 | |
saponin | 2A.24 | |
saporin | 9.31 | |
scab | 6A.21 | |
scarecrow | 9.30 | |
Scenedesmus sp. | 8.02 | |
scientific racism | 3B.01 | |
screening | 6A.40 | |
secondary metabolites | 2A.21 | |
Seed Storage Proteins | 2B.03 | |
SEEDSTIK-like gene | 2A.57 | |
segregation distortion | 2A.80 | |
selection | 9.29 | |
self-incompatibility | 3A.08, 9.40 | |
semi-quantitative RT-PCR | 8.26 | |
sense and antisense RNA | 1.14 | |
sensitivity | 2A.34 | |
Septoria tritici blotch (STB) | 6A.16 | |
sequencing | 2A.14 | |
sesquiterpene lactones | 8.21 | |
sex chromosome | 2A.14 | |
sexual polyploidization | 9.28 | |
Sgp-1 | 8.11 | |
Shannon entropy | 9.52 | |
shortened SSR | 8.20 | |
Sicilian Helichrysum | 9.18 | |
signal transduction | 2A.23 | |
signalling | 2C.10, 2C.11 | |
signalling pathway | 7.35 | |
significantly differentially expressed genes | 2A.34 | |
silicon | 2C.13 | |
Silk Road | 3B.03 | |
Simple Sequence Repeat | 2A.42, 6A.09, 9.42 | |
Single Nucleotide Polymorphisms (SNP) | 2A.50, 6A.11 | |
Sinorhizobium meliloti | 7.37 | |
Sir2 | 1.07 | |
siRNA | 1.11, 7.03 | |
sirtuin | 2A.39 | |
skeletal muscle | 2A.13 | |
S-nitrosylation | 7.38 | |
SNP | 2A.12, 2A.49, 2A.69, 3A.13, 4.06, 6A.25, 6A.28, 9.01, 9.56 | |
sodium bicarbonate | 9.19 | |
sodium dodecyl sulfate-polyacrylamide gel electrophoresis | 7.32 | |
Solanaceae | 1.15 | |
2A.86, 6A.32 | ||
Solanum lycopersicum L. | 4.11, 6A.29, 6A.31, 8.06, 8.28, 8.30, 8.33 | |
Solanum pennellii introgression lines (ILs) | 6A.48, 8.32 | |
Solanum tuberosum | 2A.07 | |
somatic mutation | 2A.62 | |
specificity | 2A.34 | |
spermatogenesis | 5A.03 | |
sphingolipid metabolism genes | 9.50 | |
Spinacia oleracea | 2A.32 | |
sporophytic self-incompatibility | 3A.25 | |
sprouting | 6A.38 | |
Sr isotope ratio | 9.20 | |
SRT1 | 2A.39 | |
SRT2 | 2A.39 | |
SSR | 2A.22, 3A.17, 3A.20, 8.08, 8.29, 8.30 | |
SSR markers | 6A.16, 8.20, 9.12, 9.26 | |
SSR-microsatellite | 9.08 | |
SSRs | 6A.13 | |
starch | 2A.74, 5B.01, 5B.03, 5B.04, 8.10, 8.11, 8.17 | |
starch branching enzyme | 2A.74 | |
starch metabolism | 5B.02 | |
stem cell niche | 9.30 | |
sterile spikelets | 6A.15 | |
stilbene synthases | 2A.40 | |
stomata opening | 5B.03 | |
storage | 8.22 | |
strategy development | 9.16 | |
stress conditions | 9.22 | |
stress response | 2C.11, 3A.14, 6A.27 | |
strigolactones | 9.22 | |
STRs | 9.56 | |
substrate range
|
3A.11 | |
succinate dehydrogenase | 6B.09 | |
sugar metabolism | 5C.10 | |
sulfate assimilation | 9.06 | |
sulfur metabolism | 9.06 | |
Sunn pest | 7.32 | |
supply-demand analysis | 4.01 | |
SVP | 2A.30 | |
SYBR Green | 8.15 | |
symbiosis | 2C.10, 7.08, 7.28 | |
symbiotic nodule formation | 7.42 | |
synonymies and homonymies | 9.42 | |
synteny | 2A.28, 2A.71, 6A.15, 6A.12 | |
systemin | 2A.84 | |
Systems Biology | 4.13 | |
T |
|
|
T1D | 5C.17 | |
T1DM | 5C.16 | |
TAIL-PCR | 9.25 | |
Ta-siRNAs | 2A.09 | |
T-cell receptor | 2A.60 | |
T-DNA | 9.25 | |
tellurite | 4.09 | |
telomerase | 2A.63 | |
telomere | 2A.11, 2A.63 | |
TERMINAL FLOWER1 gene | 9.03 | |
thiols | 8.25 | |
thousand kernel weight | 6A.15 | |
tiling array | 2A.27 | |
tillering | 6A.22 | |
TILLING | 6A.01, 6A.17, 9.01 | |
tobacco | 5C.02 | |
tobacco BY-2 cells | 4.07 | |
tocopherols | 8.27 | |
tomato | 2A.27, 2C.13, 2C.14, 3A.02, 4.03, 5C.10, 6A.31, 7.28, 8.30 | |
tomato fruit quality | 8.32 | |
tomato plants | 7.13 | |
tomato proline transporter (LeProT1) | 6A.30 | |
tomato wild species | 2A.53 | |
Tomentella | 9.39 | |
tonoplast biogenesis | 2B.05 | |
totipotent cDNA | 2A.01 | |
traceability | 8.29, 9.20 | |
transcription factor | 2A.04, 2A.06, 2A.25, 2A.37, 4.08, 6A.32, 7.39, 7.42 | |
transcriptome | 2A.05, 2A.36, 3A.13, 9.43 | |
transcriptomics | 2B.07, 8.32 | |
transformation | 3A.19, 5C.06 | |
transgene copy number | 2A.45 | |
transgenic plant | 6A.34, 7.18, 7.19 | |
transgenic poplar | 2A.45, 6A.35 | |
transgenic wheat | 8.05, 8.10 | |
transient expression | 5C.17 | |
translation efficiency | 6B.06 | |
transmission electronic microscopy | 4.09 | |
transport | 2C.10 | |
transposable elements | 1.02 | |
transposon | 2A.41, 2A.56 | |
TRAP molecular markers | 9.27 | |
treatment | 8.23 | |
TRG and TRD loci | 2A.62 | |
TRG locus | 2A.60 | |
Trichoderma-plant interaction | 2A.52 | |
tristeza | 1.11 | |
TriticeaeGenome | 6A.22 | |
Triticum | 9.05, 9.06 | |
Triticum aestivum | 2B.03, 6A.21, 7.32, 9.02 | |
Triticum durum | 2A.67, 2A.72, 2B.03, 6A.21, 7.16, 8.08 | |
Triticum durum Desf. | 6A.08, 6A.11, 6A.16 | |
truffle | 2A.22, 2A.23, 9.35 | |
tuber | 2A.22, 2A.23 | |
Tuber aestivum | 9.39 | |
tuber biology | 2A.07 | |
two-dimensional electrophoresis | 9.35, 9.36 | |
two-dimensional gel electrophoresis | 7.37 | |
two-dimensional liquid chromatography | 2B.09 | |
TYLCSV | 7.28 | |
tyrosine nitration | 7.40 | |
U |
|
|
ultrastructure | 8.02 | |
uncoupling proteins | 9.47 | |
UNESCO Statements on Race | 3B.01 | |
unfolded protein response | 2B.07 | |
Uniculme4 | 6A.22 | |
urea | 2C.15 | |
V |
|
|
vacuole biogenesis | 2B.10 | |
varietal characterization | 3A.07 | |
vein density | 2C.06 | |
vessel grouping | 2C.07 | |
Vicia faba | 9.23 | |
Vicia sativa | 9.23 | |
VIGS | 8.03, 8.06 | |
virus resistance | 3A.10 | |
Vitamin B6 | 5A.05 | |
vitamin C | 8.07 | |
Vitis | 3A.18 | |
Vitis vinifera | 2A.05, 2A.33, 2A.34, 2A.35, 2A.38, 2A.39, 3A.09, 3A.14, 3A.22, 6A.43 | |
Vitis vinifera (“Prosecco”) | 7.27 | |
Vitis vinifera cv. Corvina | 2A.36 | |
Vitis vinifera L. | 6A.05, 9.42 | |
viviparous | 2A.68 | |
VOCs analysis | 7.26 | |
VvMYB5a | 3A.19 | |
VvMYB5b | 3A.19 | |
W |
|
|
wall associated kinase 1 | 7.36 | |
water availability | 2C.06, 2C.07 | |
water deficit | 6A.29 | |
water deficit tolerance | 6A.48 | |
western blot | 7.32 | |
wheat | 2A.28, 2A.69, 2A.70, 2A.71, 2A.74, 2A.76, 2A.82, 2A.83, 5B.04, 6A.17, 6A.20, 7.18, 7.19, 7.21, 8.11 | |
wheat allergy | 8.05 | |
wheat collection | 6A.19 | |
wheat development | 7.20 | |
wheat kernel proteins | 8.05 | |
wheat quality | 9.05, 9.06 | |
white poplar | 6A.35 | |
Whole Genome Duplication (WGD) | 2A.06 | |
whole- genome sequence | 3B.02 | |
wild potato species | 2A.86 | |
wounding stress | 6A.45 | |
WRKY genes | 7.23 | |
X |
|
|
X-chromosome | 2A.02 | |
xylanase inhibitor protein | 7.19 | |
xylanases | 7.19 | |
xylanases inhibitor | 7.22 | |
Y |
||
Y-chromosome | 9.56 | |
yeast model | 5A.01, 6B.04, 6B.09 | |
yeast strains | 4.05 | |
yield | 6A.13, 6A.20 | |
Z |
|
|
Zea mays L. | 1.02, 1.03, 1.08, 1.14, 2A.73, 2C.15, 4.12, 4.15, 6A.23, 6A.24, 6A.26, 7.07, 7.24, 7.31, 8.09, 8.16 | |
zein | 2A.73, 2B.07 |