Poster Communication Abstract – 9.22

VALIDATION OF GENES INVOLVED IN STRIGOLACTONES BIOSYNTHETIC PATHWAY IN *LOTUS JAPONICUS*

LIU J.*, VISENTIN I.**, BONFANTE P.***, LOVISOLO C.*, SCHUBERT A.*, CARDINALE F.*

*) Dipartimento di Colture Arboree, Università degli Studi di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)
**) DiVaPRA, Università degli Studi di Torino, Via L. da Vinci 44, 10095 Grugliasco (Italy)
***) Dipartimento di Biologia Vegetale, Università degli Studi di Torino, V.le Mattioli 25, 10125 Torino (Italy)

Strigolactones, plant branching, biosynthetic genes, Lotus japonicus, stress conditions

As sessile organisms, plants elaborate their development of branches in response to environmental and developmental signals to maximize reproductive success. Hormones play a critical role in determining the diversity of plant branching. One of the signaling pathways regulating branching involves MAX/RMS/D (more axillary branching) genes, which are apparently highly conserved in higher plants. Strigolactones, a group of terpenoid lactones, have been recently identified as products of the MAX/RMS/D pathway that travel acropetally from root through xylem to inhibit bud outgrowth. Here we report the cloning of the first catalytic enzyme for strigolactones (*CCD7*) from *Lotus japonicus* (*LjCCD7*) by RACE-PCR. *LjCCD7* contains a 1866bp ORF encoding 621 amino acids, and is most closely related phylogentically to *RMS5* of pea, *CCD7* of soybean, Arabidopsis and tomato. *LjCCD7* was then prokaryotically expressed as GST fusion protein, and detected by both SDS-PAGE and western blot analysis. As in other species, enzymatic activity of the purified GST-LjCCD7 indicated that it encodes an enzyme capable of cleaving carotenoids such as beta-carotene. Plants silenced for *LjCCD7* were generated, and are being molecularly characterized. Their phenotype is currently being analyzed under different stress conditions.