Proceedings of the XLVI Italian Society of Agricultural Genetics - SIGA Annual Congress

Giardini Naxos, Italy - 18/21 September, 2002

ISBN 88-900622-3-1

 

Oral Communication Abstract - S4e

 

LTR AND NON-LTR RETROTRANSPOSONS ARE COMMON GENETIC COMPONENTS IN FAGUS SYLVATICA L. GENOME

 

EMILIANI G., PAFFETTI D., GIANNINI R.

 

Department of Environmental and Forestry Technology and Science (DISTAF), Faculty of Agriculture, University of Florence

 

 

retrotransposons, Fagus sylvatica, BLAST, regulation, genetic improvement

 

Retrotransposable elements are common parts of plants genomes (Heslop-Harrison et al ., 1997) showing high variability (Le et al. , 2000) and complex taxonomy; their high stress-related mobility in the genome contribute to genome evolution (Wendel & Wessler, 2000) and the insertion in coding regions imply demonstrated regulative action (White et al., 1994; Liu & Wendel, 2000). The presence of retrotransposons is widely reported for herbaceous and agronomic species (Wang et al ., 1997; Rogers & Pauls, 2000) whilst in forest trees only for conifers (Kamm et al ., 1996; L’Homme et al ., 2000).

 

During a genetic diversity screening in beech’s (Fagus sylvatica L.) population of southern Italy using RAPD markers, we argued a peculiar role for two high frequency markers (freq. > 98% among the 700 individuals analysed). Southern Blotting analysis demonstrated markers uniqueness and the effective presence of fragments in the samples. Sequencing and successive BLAST alignments scored high similarity to Arabidopsis ’ and Zea mais ’ retrotransposons.

 

The retrotransposons discovered (GeneBank accession n. AF405557, AF405555) in Beech belong to the groups of Copia-like and non-LTR retrotransposable elements.

 

The potential regulative function of these two elements can be used as functional markers useful in genetic improvement strategies.

 

The work is going ahead in screening other broadleaf for retrotransposable elements to use in adaptation studies and phylogenetic analysis.

 

 

Liu B. & Wendel J. F. (2000) – Genome 43: 874-880.

Heslop-Harrison J. S. et al . (1997) – Genetica 100: 197-204.

L’Homme Y. et al . (2000) – Genome 43: 1084-1089.

Wendel J. F. & Wessler S. R. (2000) – PNAS 97: 6250-6252.

White S. E. et al . (1994) – PNAS 91: 11792-11796.

Wang S. et al . (1997) – Plant Mol. Biol . 33: 1051-1058.

Rogers S. A. & Pauls K. P. (2000) – Genome 43: 887-894.

Kamm A. et al . (1996) – PNAS 93: 2708-2713.

Le Q. H. et al . (2000) – PNAS 97: 7376-7381.